If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+15X=190
We move all terms to the left:
X^2+15X-(190)=0
a = 1; b = 15; c = -190;
Δ = b2-4ac
Δ = 152-4·1·(-190)
Δ = 985
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{985}}{2*1}=\frac{-15-\sqrt{985}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{985}}{2*1}=\frac{-15+\sqrt{985}}{2} $
| 22x-5=9x-1 | | (1/5)x+4/5=6/5 | | 9x=12=111 | | 14400=1600t-16t2 | | -36=-4x+20 | | 5.6+(-0.2x)=4.8 | | 14x+3=121 | | (3x-2)/7x=1/x | | x/3=350 | | -36=-4x20 | | 32=48t-16^2 | | 8-x=2x+7 | | 7-2h=-13 | | 5(x-2)+2=8(x-3)+1 | | x/3=550 | | -20=d-8= | | 2—-2y=-2 | | 3.3=2(3.14)(r) | | (x-5)-29=90 | | 6+-3h=-6 | | X^2=-16x-36 | | -8=⅔x | | -(9x/21)=3 | | x-5)+29=90 | | 3x+5=-8x-6 | | y=15000•1.04^25 | | -20=a+11= | | 7r-12=93 | | 10(10*42)=13(13*x) | | 6x+78=3x+135 | | x²+196=0 | | -15=c-7= |